Montana winters were certainly nicer during the Late Mississippian period some 318,000,000 years ago. Montana was much warmer --- it was only 12o north of the equator and over half the state was covered by shallow, warm, tropical seas. Although the skiing and snowboarding was non-existent the surfing was vastly improved. Of particular interest to this post is an area in central Montana that during Mississippian times was a shallow bay, only 40 meters deep and 15 km long. Today the sediments deposited on the floor of this bay are known to geologists and paleontologists as the Bear Gulch Limestone (BGL) and those rocks are world renowned for their truly spectacular fossil record .
The Bear Gulch Limestone occurs in repeated layers that separate well so it is not surprising the fossil beds were discovered by local ranchers who were quarrying it for ornamental building stone. Although only discovered in 1977, the BGL has yielded about 130 species of fish, some 65 of which are chondrichthyans, the “cartilaginous” fishes, such as primitive sharks, rays, and holocephalans. Because most of their skeleton consists of cartilage rather than bone, and cartilage has a much lower fossilization potential, a great deal of the fossil record of sharks looks like this..... .... little more than shed and isolated teeth. The spectacular fossilization in the BGL, preserves not only cartilaginous skeletons but soft internal tissue as well as skin. Thus it is no wonder that the Bear Gulch Limestone is one of our best windows onto life of the Mississippian.
And it’s because of that remarkable preservation that we
turn to the Bear Gulch Limestone and two of its primitive fish to celebrate
Mother’s Day 2012.
**********************************
Harpagofututor and the Joys of a Large Family
Harpagofututor is a primitive member of the Holocephali, a group of still living cartilaginous fishes. They are known by a variety of popular names (rat fish, chimaeras) and most of the 34 living species inhabit deep sea environments, with a few species preferring shallow water. Although an ancient lineage, originating some 400,000,000 years ago, holocephalans remain poorly known to the general public.
Harpagofututor is
not a particularly large fish, reaching a maximum size of 165mm (~7in). It has an elongate, eel-like, body and is
known from numerous specimens. This fish comes in two forms, one with a “normal
head” and the other with two large cartilaginous appendages projecting from the
top of the skull in front of the eyes. Each appendage is jointed at mid-length
and there is a moveable ball and socket articulation with the top of the
skull. The end of each appendage was a
long thin fleshy extension bearing numerous small hooks. The two forms are
otherwise quite similar and these striking differences are due to sexual
dimorphism, with the male using the appendages for display or to hold onto the
female during copulation, as do some living holocephalans.
However, Harpagofututor
was thoughtful enough to confirm this suspicion of sexual dimorphism by
having
two unornamented specimens preserved with embryos inside the body
cavity, confirming them as female. Sometimes the fossil record plays
nice.
The number of embryos preserved is 4 in one specimen and 5
in the other. Within each group one embryo is distinctly larger (based on skull
size), with the skull length of the largest approaches that of adults. Thus it
would appear that Harpagofututor young
were born live (known as viviparity) and at a large size. This would give the
newborns a distinct advantage in obtaining food and surviving.
The
larger individuals in each female are clearly at a more
advanced stage of development than its litter mates. This is most
likely due to superfoetation,
where a female carries multiple litters and the young exhibit distinctly
different stages of development. Thus
what we are seeing are young that came from eggs fertilized at different
times. This might be due to separate
copulations after separate ovulation events, or from a female storing
sperm
from only one copulation and using it to fertilize eggs from different
ovulation cycles. In some of the female specimens with soft tissues
preserved, sperm receptacles are present, suggesting that female storing
of sperm occurred in Harpagofututor.
Harpagofututor is
the only known case of superfoetation in the fossil record. It has evolved
numerous times in boney fish but this is only the second known record for
cartilaginous fishes. The other is that
of a living whale shark carrying 300 young at three different developmental
stages.
So now knowing a little bit about the morphology and biology
of Harpagofututor, you can better
appreciate the meaning of the name, which is derived from harpagos, grappling
hooks, and fututor, copulator, in
reference to the secondary sexual apparatus of the males of this species.
**********************************
Old Womb Tooth and the First Sibling Rivalry
The other star of this post is Delphyodontos and we only
know of it because of the spectacular fossilization found in the BGL. Only two Delphyodontos specimens have been described in the scientific literature, and
both are very small, although larger, newly discovered specimens are currently
under study.
Delphyodontos is a
primitive cartilaginous fish. The two
described specimens measure 35mm (1.4 inches) and 29mm (1.2in) respectively. Its
shape is peculiar, with an enlarged abdomen, poorly developed fins, and an
arched backbone. These features indicate
that Delphyodontos was relatively
helpless and not capable of swimming. However, these features are also
characteristic of a fetus. The known specimens are most likely spontaneously aborted late term
fetuses.
What
is even more intriguing than its body shape is its
teeth. The upper and lower tooth plates are compressed, blade like, and
bear
tall cusps. This tooth structure is
adapted for slashing and piercing. That's unique for holocephalans for
all other known members of the group, both living and fossil, have
crushing tooth plates. Although Delphyodontos adults have not yet been described, it is highly likely that they had crushing teeth as well. So what would a Delphyodontos fetus need such teeth for?
In addition, there is no evidence of a yolk sac or umbilicus, so what
was the fetus feeding on?
The answer comes from the smaller specimen, in which a large
fecal mass is preserved in the back of the abdomen. Since these small, fetal fish were not
capable of swimming yet show a fecal mass in the gut, they must have been
feeding inside the female before birth.
There are, surprisingly, food sources within the mother, notably other
eggs. Such intrauterine feeding is known in living cartilaginous fishes, where
the yolk sac is absorbed early in development and specialized dentition is used
to open egg capsules and consume the contents.
In some cases, the mother shark provides a steady supply of unfertilized
eggs as a food source. The fetus of some modern intrauterine feeding sharks
show an expanded foregut, as in Delphyodontos.
So as peculiar as Delphyodontos
looks, its features give us insight into its biology, even before birth. And if eating the other eggs sharing the
uterus with you isn’t sibling rivalry, then I have no idea what is.
Hopefully, knowing about the biology of Delphyodontos gives you a better appreciation of its
name, which is derived from delphyo,
womb, and dontos, tooth.
I wish all my readers a happy 2012 Mother's Day. Go ahead, give mom a hug and a kiss and, if you feel like it, gobble down a couple of eggs in memory of old Delphyodontos.
But stay tuned for my Father's Day post. I already have it plotted out.
*****************************************************
PHOTOS
Paleogeographic map, BGL outcrop, photo of male and female Harpagofututor, and photo of Delphyodontos specimen (some modified): Fossil Fishes of Bear Gulch http://www.sju.edu/research/bear_gulch/
Shark teeth: Drawings of male and female skulls of Harpagofututor (modified): Lund 1982 (below).
Two pregnant Harpagofututor specimens (modified): Grogon and Lund 2011 (below)
Drawing of jaws and teeth of Delphyodontos (modified): Lund 1980 (below)
SOURCES
Fossil Fishes of Bear Gulch. www.sju.edu/research/bear_culch/index.htp
Grogon, E.D. and Lund, R. 1997. Soft Tissue Pigments of the Upper Mississippian Chondrenchelyid, Harpagofututor volsellorhinus (Chondrichthyes, Holocephali) from the Bear Gulch Limestone, Montana, USA. Journal of Paleontology, Vol. 71 (2): 337-342.
Grogon, E.D. and Lund,
R. 2002. The geological and biological environment of the Bear Gulch Limestone
(Mississippian of Montana, USA)
and a model for its deposition.
Geodiversitas 24(2): 295-315.
Grogon, E.D. and Lund,
R. 2011. Superfoetative viviparity in a Carboniferous chondrichthyan and
reproduction in early gnathostomes.
Zoological Journal of the Linnean Society 161: 587-594.
Hagadorn, J.W. 2002.
Bear Gulch: an exceptional Upper Carboniferous Plattenkalk. In Bottjer, D.J.,
Etter, W., Hagadorn, J.W., & Tang, C.M. (eds.) Exceptional Fossil
Preservation: A Unique View on the Evolution of Marine Life. New York: Columbia
University Press: 167-183.
Joung, S.J., Chen, C.T., Clark,
E., Uchida, S.W., and Huang, Y.P. 1996. The whale shark, Rhincodon typus, is a livebearer; 300 embryos found in one
‘megamomma’ supreme. Environmental Biology of Fishes 46: 219-223.
Lund,
R. 1980. Viviparity and intrauterine
feeding in a new holocephalan fish from the Lower Carboniferous of Montana.
Science 209 (4457): 697-699.
Lund,
R. 1982. Harpagofututor volsellorhinus new genus and species
(Chondrihthyes, Chondrenchelyiformes) from the Namurian Bear Gulch Limestoine,
Chondrochelys problematica Tarquir
(Visnean) and their sexual dimorphisms. Journal of Paleontology 56(4): 938-958.
| ||||||||||||||||
Haloo pak^^
ReplyDeleteKami dari SENTANAPOKER ingin menawarkan pak^^
Untuk saat ini kami menerima Deposit Melalui Pulsa ya pak.
*untuk minimal deposit 10ribu
*untuk minimal Withdraw 25ribu
*untuk deposit pulsa kami menerima provider
-XL
-Telkomsel
untuk bonus yang kami miliki kami memiliki
*bonus cashback 0,5%
*bunus refferal 20%
*bonus gebiar bulanan (N-max,samsung Note 10+,Iphone xr 64G,camera go pro 7hero,Apple airpods 2 ,dan freechips)
Daftar Langsung Di:
SENTANAPOKER
Kontak Kami;
WA : +855 9647 76509
Line : SentanaPoker
Wechat : SentanaPokerLivechat Sentanapoker
Proses deposit dan withdraw tercepat bisa anda rasakan jika bermain di Sentanapoker. So… ? tunggu apa lagi ? Mari bergabung dengan kami. Pelayanan CS yang ramah dan Proffesional dan pastinya sangat aman juga bisa anda dapatkan di Sentanapoker.